Relaxation strategies for nested Krylov methods

نویسندگان

  • Jasper van den Eshof
  • Gerard L. G. Sleijpen
  • Martin B. van Gijzen
  • MARTIN B. VAN GIJZEN
چکیده

There are classes of linear problems for which the matrix-vector product is a time consuming operation because an expensive approximation method is required to compute it to a given accuracy. In recent years different authors have investigated the use of, what is called, relaxation strategies for various Krylov subspace methods. These relaxation strategies aim to minimize the amount of work that is spent in the computation of the matrix-vector product without compromising the accuracy of the method or the convergence speed too much. In order to achieve this goal, the accuracy of the matrix-vector product is decreased when the iterative process comes closer to the solution. In this paper we show that a further significant reduction in computing time can be obtained by combining a relaxation strategy with the nesting of inexact Krylov methods. Flexible Krylov subspace methods allow variable preconditioning and therefore can be used in the outer most loop of our overall method. We analyze for several flexible Krylov methods strategies for controlling the accuracy of both the inexact matrix-vector products and of the inner iterations. The results of our analysis will be illustrated with an example that models global ocean circulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical methods for the QCD overlap operator: III. Nested iterations

The numerical and computational aspects of chiral fermions in lattice quantum chromodynamics are extremely demanding. In the overlap framework, the computation of the fermion propagator leads to a nested iteration where the matrix vector multiplications in each step of an outer iteration have to be accomplished by an inner iteration; the latter approximates the product of the sign function of t...

متن کامل

Hierarchical Krylov and nested Krylov methods for extreme-scale computing

The solution of large, sparse linear systems is often a dominant phase of computation for simulations based on partial differential equations, which are ubiquitous in scientific and engineering applications. While preconditioned Krylov methods are widely used and offer many advantages for solving sparse linear systems that do not have highly convergent, geometric multigrid solvers or specialize...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.

متن کامل

Waveform Krylov Subspace Methods for Tightly Coupled Systems

We extend Krylov subspace methods, which are intended for iterative solution of systems of linear equations, to a function space for the solution of cicuit problems. Four of the previously untried methods are applied to a tightly coupled circuit to illustrate the convergence properties of these methods. Numerical results showed that convergence was achieved for many cases where the conventional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003